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Suwrmary  The raw data from a sample of 75 sturgeon (45 listed as shovelnose and 3G described as Alabama sturgeon) were
examined to determine if there were two distinet species in this sample. Harlier work by the aunthors {AAB, PDB, WMH) coneloded
that the Alabama and shovelnose were indistinguishable based on principal component analyses of the meristic and mensural daia.
In our present work we perfonm formal Bayesian sharp hypothesis testing on the distinet principal components from the 1wo groups
(Alabama vs. Shovelnose). The question of inference on the difference of two nommal meuns when hoth the variances are unknown
is the celebrated Bebrens-Fisher Problem. This methodology applicd i the Bayesian context leads to coherent inference on the
sharp mulf hypothesis for the difference of the two component meuns, Realistic prior parameters are engaged in conjugate normal
prior distributions which when combined with the sampling distributions lead o the usual prior w0 posterior constructs. We further
derive the Bayes Factor or Weighted Likelibood Ratio (WLR) for mference on our sharp nall hypotheses. The evaluation of the
WILR for the prior stracture requires at most one dimensional quadratures which are eastly computed because the integrands are
products of known density functions with familiar propertics.

1. Introduction Datg = O X X 08080 X ) The means are denoted

by 11, and 13, with variances crf and G respectively, Qur goal
unknown is the well known Behrens-Fisher problen. This was is o present Bayesian inference as developed by Daval and
first treated i the Bayesian context by Jetfreys (1940) who Dickey (1976) for the two normal means and realistic traciable
derived Fisher's "fiducial” distribution for the difference of forms of the prior density which we denote by plut, S0,
two means us a poslertor distribution. Lindley (1963} followed
Jeffrey’s teatment with the use of the joint "complete
ignorance” prior density for the parameters of the two normat
distributions with focus on the il area of the confinuous-type
posterior  density. Dayal and Dickey (1976) treated the
Behrens-Fisher problem in the context of the weighted

nference on two nopmal means when the variances are

We briefly review necessary {ormnulac and concepts from the
theory of Bayes factors for a sharp hypothesis (single
dimenston reduction). For the problem of two nommal
popuiations, define it = 1, - B, and fet { denote the nulsance
parameters (= (U, 0, o,). The transformation to 1 and (
likelihood ratio or Bayes factor. Their treatise dealt with the from 1, and u, Is simple with unit Jacobian. Then the Bayes
global subject of "coherent inference for the Behrens-Fisher factor B(H,) for the hypothesis Hp m = w, versus the
problems”. itis the methodoiogy of Daval and Dickey (1970) alternative Hy =, (prior probabifities 0 < P(Hy < 1 and
that we pursue in this paper. Our application is to the PH) = 1 - P(H,)) is given by

Alabama Sturgeon Controversy in which we test the. equality

of means on u statistically reduced data set of mensural BH) = lim)/ f 1) p(ay|H,) an
characteristics from two alieged distinet species of sturgeon, kA

t.e.., (he shovelnose sturgeon and the Alabama sturgeon. Our piDatalH )

approach is via the Bayes factor method. We [irst present the = m (1)

test and resalts for equality of means assigning integrable
prior  densities 1o the paramelers of the two normal
distributions. Our second approach is to test the complete
cquality of the two populations, iec., equal means and
vardances relving more heavily on non-integrable prior
constant densities for the difference of the mean parameters.
Our resuits are applied to the achual sample of mensural data

where {n)} is the marginal (prior integrated) Ukelihood of 1)
and pniH,} 1s the prior density of 1 on H, induced by the
prior of (1, { on the whole parameter space. Note that the
Bayes factor does not depend on P(H,) or P(H)). Also, note
the posterior odds for Hy vs. H, can be obtamed by
multiplying B(H;} by the prior odds. It has been shown
(Dickey and Lientz, 1970} that B{H,) can ziso he obtained as
Savage’s density ratio
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i1 Statistical Methods B, =

The traditional Belirens-Fisher problem is one of inferring

from two independent normal samples with provided 1(n) s continuous at 1,. We note that the Bayes
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factors discussed here provide an approximation o a
neighborhood hypothesis Bayes factor by a sharp hypothesis
Bayes factor. The neighborhood nill ypothesis takes the form

0 = () - e, 3)
for smail 8.

Recall that 1y =, - W, or the difference of two nonnal means,
One could also consider 1) to be equal to the ratio u/p,. As it
stands the difference and ratio are special cases ol a major
general discrepancy measure.

One can show that the expression (3} becomes p; - 4, a8
¢ — | and that {3) is equal to p/y, as ¢ —» 0. The Bayes
factors for n° as ¢ ~» 1 and ¢ — O are not equal. As @n
exumple of inference on ratio parameterss, see Bartolucci and
Dickey (1977) or Bartolueet and Singh (1993).

The joint likelthood of the lour parameters for our two
independently sampled normal disiributions is:

Hilyy by @ Tpe Hpp, 9Dl o)

where in general,

" r )
oy (o7 exp L—_';.G’z(n{p - my o+ Vs 2)} . @

“ 3 2
B = X, + X 4 ook X, V85 = (30 - m) + L+ (X, - m)

v= n- 1 Specifically, for cach sample the n, m, v, and §*
are subscripted by 1 or 2 respectively.

The fumiliar traditionad disgribution of the sufficient statistics
m and s* depends on the sample size n and thus holds for
samples of fixed size. The likelthood {4) applies for any noa-
informative stopping rule o yield a single Bayesian inference.
For the purposes of Bayesian inference from real data, we
may assume that m and s° have their traditional fixed size
sampling distribution.

We further define ¢~ 9 and &, (-, -, 9 the {-dens';ty
and Behrens-Fisher density as follows:
-1
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1
G fx; 57 =57 VWIBEI(J{%,%} {1 + vy 7

dpvpv:(:r, 50 .\*2') = L[‘(pv:(x -z, .5';) 0,z sy }dz )
in which Beta(s, b} denotes the complete beta integral
1 .
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Let us now assign realistic integrable prior densities (o
{15, 1y, 0, 0.} all four independent given H, each of Gf zmdcii
distributed as Tg ¥y’ and each of y, and p, having density
PUIH) = 0,00 = mys).

Note that p{u|H,) 13 normal for v, = . Let

S

el

E

B=v

Vo=, F
£ (vlsf + Tg /B
f = (vzsf + 1g By,

then B(H,) for Hy =, - g, = 0 is

B(H) = fq)ﬂ@l - e/ni}cpv(y -1 G/nz)(g;vs(v -y sy

. e . -
0y vq(ml -m e su) ¢, vn(mq_ =iy Giny 30)

{05 s (6)

Since the integrand consists of known densities with famifiar
properties it is easily computed numerically. The numerator is
a convolution of t-densities and the denominator s a product
of Behrens-Fisher densities.

Dayal and Dickey (1976} also considered the guestion of both
pararneters shared versus non-shared. That is Lo say, we can
consider two normal distributions of being nearly the same
distribution. Conceivably, we can infer that they share the
same mean and vasiance, i.e. define the hypothesis

Ky n=0 and o =1
where p = ajfo, and
K: n=0 and p= 1

We consider the u, and p, as having approximate prior
constant density which we denole as

Pl WIH) = const, cons,
= pn|H)pCIH ),

and ¢, and &, with prior density as before, le. g 3,’;{:.

Define
n, = n, 1,
v, =n, +n, -1
B
D= Be « anm (m - m)

Then the Bayes factor for testing K, versus K| is

1 (21, 2rg?
By = __MID )
const, kiv, + 2t, D + 2tg }
k(z, 1¢%

W, Bk, 1) o



where k(a, ¢} i3 the nommalizing constant of the density
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i.2 Resulis

Of the 75 sturgeon in the sumple, 45 were listed as
Shovelnose (5} and 30 were labeled as Alabama sturzeon (A),
There were 35 mensural variabies in the data set. Four
principal components explained approximately 60% of the
varlation in the daa. The analysis was geared to compare the
mean of the reduced data in A to that of 5, Table 1
smnarizes the data, The overall classical significance level
is around 0.08 indicating no statistical difference between the
two samples. We wish o conduct our Bayesian analysis which
shows cven less extreme coberent conclusions.

Table 2 throngh 4 give the Bayes Factor for testing the
equality of means using equation (6. Realistic values of © and
g vary from 5 1o 15 and 1 to 2, respectively. These are given
@ the left margin with a fixed value of m, equal to 1.0. The
value of 8, und v, vary over a reafisiic range for subjective
prior assessment of these parameters. See Birch and Rartelucci
(1983). The values of the Bayes Factors are fairly robust
within T and ¢ categories for varyving s, and v, Note that if
the prior odds were even, the posterior adds or Bayes Factor
would still show evidence for Hy. This is further evidenced hy
Figure 1 which is the standardized poslerior region over the

parameter space for 1 = @, = [y

In Table 5 are given the WLR for making inference
concerning the complete equality of the two populations (equal
means and variances), Values are given her for T ran ging from
1to 5 and g ranging from 1 to 2. The constant i equation {7}
is given a wide range of about 5000. this is truly a non-
informative prior. In any case, the Bayes Factor shows very
strong evidence for K, over K, confirming further the equality
of the two sturgeon populations with respect to the reduced
mensural data.

1.3 Conclusion

The results outlined herein reinforce the conclusion of Howell,
Blanchard and Bartolucei (1994), They established thar the
sturgeon samples, A and 5, were indistinguishable species
using the principad component anatyses. We had the
opportunily here to apply the Behrens-Fisher WLR o establish
the same. This data reduction technique combined with the
Bayesian analysis allows one to avoid inference based solely
on single tail area probabilities. One has the ability (0 examine
inferences based on reasonable functions of the parameters in
the prior parameter space.
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1.6 Tables

Biandard
Sturgeon Blean Davintion P alue
A -0,4278 (m;) (8L TER Kt
1 B.Z781 {my) 1836 (5,

Table 1
Traditional Test of the Means
{Average of the First Four Principal
Components) frorn the Sturgeon Sample.
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7= A
g=1.0 5y U, Bayes
Factor
m, = 1.0 4.5 14 0.4374
15 (6.4318
X0 0.4251
ki) 0.4213
jR1] i0 01171
i5 01156
At 01173
30 01214
T =50 0.5 H 0.5858
g =24 15 05038
0 0.5005
30 05025
1.4 19 i1ty
13 0.1131
28 01122
3 C.1136
Bayes Factor to Test Hy: n =0
+ = & g = (1, 2}, Equation &

7= 1.0
g= LG 5, N Bayes
Factor
0.5 10 0.4166
15 0.4113
20 0.4086
30 0.4010
10 19 0.1 848
15 01156
24 0.1547
M 21862
= 1.4 0.5 10 0.47%0
g= 2.0 15 04781
20 0.4801
30 0.4822
1.8 10 01015
13 0.1002
20 G102
30 6.1833

Bayes Factor to Test Hy: 5 =40.
= 18, g = (1,°2), Equation 6.
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T+ =150 S U
a= 1.0 Bayes
Factor
0.5 10 2.4009
15 0.3959
20 0.3882
30 L3858
1.0 16 11119
i3 01131
20 1.11438
30 L1162
=18 8.5 {.4582
g= 2.0 5 {14627
20 4597
30 0.4619
1.0 0 (.0937
15 6,0925
20 0.0816
30 0.0955
Table 4
Bayes Factor o Test Hy: 5 = €.
o= 15, ¢ = (1, 2), Equation 6.

T 4 Bayes Factor

i i (.92

2 1 34.45

3-5 1 = 100000

1 2 23.02

25 2 > H00.00

Table 5

Bayes Factor to Test K: n =4,
p=1vs.yp=8 p =1, Equation 7.
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Figure

Standard Likelihood
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Figure 1
Standard Likelihood Plot of the
Difference Between Two Means (1)
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